High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains

نویسندگان

  • Travis C. Fisher
  • Mark H. Carpenter
چکیده

Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrowstencil finite difference approach is used to approximate viscous terms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

Entropy Stable Schemes

We review the topic of entropy stability of discrete schemes, finite-difference and finite-volume schemes, for the approximate solution of nonlinear systems of conservation laws. The question of entropy stability plays an important role in both, the theory and computation of such systems, which is reflected by the extensive literature on this topic. Here we focus on a several key ingredients in...

متن کامل

Convergence of Finite Difference Schemes for Conservation Laws in Several Space Dimensions : the Corrected Antidiffusive Flux Approach

In this paper, we apply the general method we have presented elsewhere and prove the convergence of a class of explicit and high-order accurate finite difference schemes for scalar nonlinear hyperbolic conservation laws in several space dimensions. We consider schemes constructed—from an £-scheme— by the corrected antidiffusive flux approach. We derive "sharp" entropy inequalities satisfied by ...

متن کامل

One-Sided Difference Approximations for Nonlinear Conservation Laws

We analyze one-sided or upwind finite difference approximations to hyperbolic partial differential equations and, in particular, nonlinear conservation laws. Second order schemes are designed for which we prove both nonlinear stability and that the entropy condition is satisfied for limit solutions. We show that no such stable approximation of order higher than two is possible. These one-sided ...

متن کامل

Convergence of High Order Finite Volume Weighted Essentially Nonoscillatory Scheme and Discontinuous Galerkin Method for Nonconvex Conservation Laws

In this paper, we consider the issue of convergence toward entropy solutions for high order finite volume weighted essentially non-oscillatory (WENO) scheme and discontinuous Galerkin (DG) finite element method approximating scalar nonconvex conservation laws. Although such high order nonlinearly stable schemes can usually converge to entropy solutions of convex conservation laws, convergence m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 252  شماره 

صفحات  -

تاریخ انتشار 2013